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Abstract. The nuclear mean field plus state-dependent pairing problem is studied by using the
Bethe ansatz method. It is shown that the Hamiltonian can be expanded in terms of generators of

the infinite-dimensional Lie algebrâSU(2) without central extension. Exact solutions for excited
energies and the corresponding eigenstates of the nuclear pairing problem are derived through the
Bethe ansatz equations.

Exactly solvable models are of interest in both physics and mathematics. The importance of an
exactly solvable theory is that it can be used to test the validity of various approximate methods
for solving the same problem. The results are also useful for probing the nature of the solution,
especially its asymptotic behaviour. A large number of quantum integrable and exactly solvable
models have been found by using the inverse scattering method [1–4]. The main idea of this
method rests on the use of a special associative algebra known as a Yang–Baxter construction
[5, 6]. Up to now, most efforts have focused on quantum spin systems with nearest-neighbour
interactions [7], vertex models in statistical mechanics [8, 9], one-dimensional Schrödinger
equations [5, 10] and Hubbard models [11, 12].

There are also some many-body problems in nuclear physics that are exactly solvable,
for example, exact solutions exist for the pure pairing problem (SU(2) quasi-spin [13])
and a quadrupole–quadrupole interaction (SU(3) shell model [14]). The three limits of
the interacting boson model are other examples [15]. To obtain exact solutions for theories
that reach beyond exactly solvable models requires matrix diagonalizations. In most cases,
the dimension of the Fock space required in the diagonalization is very large, which makes
computation infeasible. Hence, many approximation methods are adopted. For example, for
the case of generalized pairing the BCS and Hartree–Fock–Bogolyubov (HFB) approximations
are often used, sometimes in conjunction with correction terms evaluated within the random-
phase approximation (RPA). However, in this case there are some potentially serious pitfalls.
First of all, not only is the number of nucleons in a nucleus of interest often small, the number
of valence particles which dominates the behaviour of its low-lying states is usually too few
to justify the underlying assumptions of the approximation. As a result, particle-number-
non-conservation effects can enter and this can lead to other serious difficulties, such as
spurious states, non-orthogonal solutions, etc. Another problem with an approximate treatment
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of pairing in nuclei is related to the fact that both the BCS and the HFB approximations
break down for a very important class of physical situations. The usual remedy in terms
of particle number projection techniques complicates the algorithms considerably without
yielding a better description of the more highly excited part of the spectrum. It is for these
reasons that particle-number-conserving methods, even if only approximate, are important for
probing the true nature of pairing effects in nuclei. The first attempt to find exact solutions
of the non-degenerate nuclear pairing problem was made by Richardson who considered
the equal pairing strength approximation which has an orbit-independent solution [16–18].
Recently, it has been shown that a mean field plus separable pairing interaction, which
includes the equal strength pairing case discussed by Richardson as a special limit, is exactly
solvable by using infinite-dimensional algebraic methods [19–21]. However, exact solutions
to the general pairing problem beyond matrix diagonalization still needs to be explored.
In this letter, it will be shown that the nuclear mean field plus state-dependent pairing
interaction Hamiltonian can also be exactly solved by using an infinite-dimensional algebraic
method.

The general pairing Hamiltonian for spherical nuclei can be written as

Ĥ =
∑
j

εj�j + 2
∑
j

εjS
0(j)−

∑
jj ′
cjj ′S

+(j)S−(j ′) (1)

whereεj are single-particle energies andS±(j) andS0(j) are the pairing operators for a
single-j shell defined by

S+(j) =
∑
m>0

(−)j−ma†
jma

†
j−m S−(j) =

∑
m>0

(−)j−maj−majm

S0(j) = 1
2

∑
m>0

(a
†
jmajm + a†

j−maj−m − 1) = 1
2(N̂j −�j).

(2)

In (2), �j ≡ j + 1
2 is the maximum number of pairs in thej th shell, a†

jm and ajm with
m = −j,−j + 1, . . . , j , are nucleon creation and annihilation operators, respectively,
N̂j is the particle number operator for thej th shell andcjj ′ in (1) is the strength of
the pairing interaction between thej and j ′ shells. If the number of the orbits isp,
it is easy to verify that the operators given in (2) generate a direct sum of Lie algebra:
⊕pi=1SUi(2).

It is clear that there are two sets of parameters ({εj } and{cjj ′ }) in equation (1). In non-
degenerate cases, theεj are real numbers that are not equal to each other. In this case, one can
assume that the parameterscjj ′ can be expanded in terms ofεj andεj ′ as

cjj ′ =
∑
mn

gmnε
m
j ε

n
j ′ (3)

where{gmn} is a set of parameters to be determined according to equation (3). Hence, similar
to the separable pairing case [19–21] we can introduce the operators{Sµn ;µ = 0,+,−; n =
0, 1, 2, . . .} with

S+
n =

∑
j

εnj S
+(j) S−n =

∑
j

εnj S
+(j) S0

n =
∑
j

εnj S
0(j). (4)

The operators{Sµn }, which form a half-positive infinite-dimensional Lie algebrâSU(2)without
central extension, satisfy the following commutation relations:

[S+
m, S

−
n ] = 2S0

m+n [S0
m, S

±
n ] = ±S±m+n. (5)
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Using thesêSU(2) generators, one can rewrite the Hamiltonian (1) as

Ĥ =
∑
j

εj�j + 2S0
1 −

∑
mn

gmnS
+
mS
−
n . (6)

In order to diagonalize the Hamiltonian (6), we use the following Bethe ansatz [22]
wavefunction:

|k; ζ 〉 = NS+(x
(ζ )

1 )S+(x
(ζ )

2 ) · · · S+(x
(ζ )

k )|0〉 (7)

whereN is a normalization constant,ζ is an additional quantum number used to distinguish
different eigenstates with the same number of pairsk, |0〉 is the pairing vacuum state defined
by

S−(j)|0〉 = 0 for all j (8)

and

S+(x(ζ )r ) =
∑
m

amS
+
m(x

(ζ )
r ) (9)

in which {am} and{x(ζ )r } are two sets ofc-numbers to be determined and

S+
m(x

(ζ )
r ) =

∑
j

εmj

1− εjx(ζ )r
S+
j . (10)

In solving the eigenvalue equation

Ĥ |k; ζ 〉 = E(ζ)k |k; ζ 〉 (11)

we observe that like the separable pairing case [20, 21], auxiliary conditions are necessary to
cancel of the so-called unwanted terms. It can be verified that the auxiliary conditions (or the
so-called additionalad hocBethe ansatz) can be chosen as∑

ν

aνε
ν
jGij =

∑
s

c(i)s

1− εj z(i)s
(12)

where{c(i)s } and{z(i)s } are another two sets of unknownc-numbers to be determined and

Gnj =
∑
m

gnmε
m
j . (13)

Using (11), (12) and commutation relations (5), one can prove that

E
(ζ)

k =
k∑
i=1

2

x
(ζ )

i

. (14)

Furthermore, thec-numbers{am} (m = 0, 1, . . . , p − 1), {x(ζ )r } (r = 1, 2, . . . , k), {c(i)s } and
{z(i)s } (06 i, s 6 p − 1) must satisfy

ai

x
(ζ )
µ

= 3i(x
(ζ )
µ ) +

∑
ν 6=µ

x(ζ )ν

x
(ζ )
ν − x(ζ )µ

Ai (x(ζ )ν ) (15a)

and∑
r>q

∑
s

c(i)s (z
(i)
s )

2

(1− εj z(i)s )(z(i)s − x(ζ )r )(z
(i)
s − x(ζ )q )

=
∑
r>q

ai

(1− εjx(ζ )r )(1− εjx(ζ )q )
(15b)



1600 F Pan et al

where

3m(x) =
∑
nµ

〈S0
µ+n(x)〉aµgmn (16a)

with

〈S0
ν (x)〉 =

1

2

∑
j

ενj (τ −�j)
1− εjx (16b)

whereτ =∑j τj is the seniority quantum number of the pairing vacuum state defined by (8)
and

Ai (x) = ai −
∑
s

c(i)s x

z
(i)
s − x

. (16c)

It can be easily seen that equations (12) and (15b) give 2p × p relations which are
necessary and sufficient conditions to express{c(i)s } and{z(i)s } as functions ofam and{x(ζ )ν }.
The remaining problem is to obtain rootsam and{x(ζ )i } from equation (15a). It is obvious that
the Bethe ansatz equation (15a) hasSk symmetry. Any permutation among different rootsx(ζ )i
for i = 1, 2, . . . , k in (15a) is invariant, which is also a required condition for the Bethe ansatz
wavefunction (7). It can be proved from (15a) that the amplitudesam form = 0, 1, . . . , p−1
in the expansion (11) can be expressed as

am = 1

k

{∑
µ

3m(x
(ζ )
µ ) +

∑
r>q

x
(ζ )
r x

(ζ )
q

x
(ζ )
r − x(ζ )q

(
Am(x(ζ )r )−Am(x(ζ )q )

)}
. (17)

Namely,am must be symmetric functions of{x(ζ )1 , x
(ζ )

2 , . . . , x
(ζ )

k }. However, equation (17)
givesp nonlinear transformations among{a0, a1, . . . , ap−1}, which can be determined only
when one of the amplitudesam for fixedm is known. Due to the fact that the wavefunction (7)
is determined up to a normalization constantN , we simply choosea0 = 1. Other amplitudes
{a1, a2, . . . , ap−1} and roots{x(ζ )i } for i = 1, 2, . . . , k can then be solved uniquely using
equation (15a) with the auxiliary Bethe ansatz equations (12) and (15b).

As a simple example of the theory, we consider theJ = 0 pairing spectra of the even–
even oxygen isotopes18–26O. The neutron single-particle energiesεj were taken from the
energy spectra of17O with ε1/2 = −3.273 MeV,ε3/2 = 0.941 MeV andε5/2 = −4.143 MeV.
These values are all relative to the binding energy of16O, which was taken to be zero. The
two-body general pairing strengthscjj ′ in MeV were taken from theJ = 0 two-body matrix
elements of the universal ds-shell Hamiltonian [23] withc1/2 1/2 = 2.125, c3/2 3/2 = 1.092,
c5/2 5/2 = 0.940,c1/2 3/2 = 0.766,c1/2 5/2 = 0.765 andc3/2 5/2 = 1.301. Using these data, one
can obtain the following symmetricgmn parameters from equation (6):g00 = 2.047 61 MeV,
g10 = −1.206 21,g02 = −0.353 204 MeV−1,g11 = 1.320 29 MeV−1,g12 = 0.405 14 MeV−2,
g22 = 0.122 13 MeV−3. The resulting excitation energies calculated from (12)–(15) are shown
in table 1. The corresponding exact eigenstates can also be obtained immediately. For example,
the one-pair states in this case can be expressed as

|k = 1, ζ 〉 =
2∑

m=0

a(ζ )m S+
m(x

(ζ ))|0〉 (18)

with a(ζ )0 = 1 and

a
(ζ )

1 =
0.888 763x(ζ )(x(ζ )2 + 0.339 93x(ζ ) + 0.038 976)

(x(ζ ) − 2.0661)(x(ζ ) + 0.228 87)(x(ζ ) + 0.336 132)

a
(ζ )

2 =
0.330 653x(ζ )(x(ζ )2 + 0.287 101x(ζ ) + 0.022 8806)

(x(ζ ) − 2.0661)(x(ζ ) + 0.228 87)(x(ζ ) + 0.336132)
.

(19)
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Table 1. Pairing excitation energies (in MeV) for even–even18–26O calculated from equations (14)–
(17).

ζ k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

0 −12.602 8 −23.149 8 −31.118 2 −37.9351 −37.8190 −34.7681
1 −8.095 95 −19.270 8 −26.752 6 −29.9163 −27.1445 —
2 0.621 055 −11.263 5 −21.604 6 −27.9489 −25.2072 —
3 — −7.631 72 −17.514 6 −18.7646 — —
4 — 2.408 87 −9.238 28 −16.0164 — —
5 — — −4.773 64 — — —

For the one-pair ground state, we havex(0) = −0.247 103 MeV−1 with a(0)1 = −0.940 131,
a
(0)
2 = −0.283 429; andx(1) = −0.158 6477 MeV−1 with a

(1)
1 = 0.051 9519,a(1)2 =

0.047 3969 andx(2) = 3.219 89 MeV−1 with a(2)1 = 2.326 03,a(2)2 = 0.851 362 for the
one-pair first and second excited states, respectively. It is obvious that the procedure can be
applied to more realistic calculations for the nuclear pairing problem. For example, shell
model results reported in [22] for some low-lying levels, spectroscopic factors and even–odd
mass difference of58–65Ni and in [25] for binding energies of18–26O can now be derived from
equations (14)–(17).

It can be verified that the building blocksS+
m(x) given by (10) of the Bethe ansatz

wavefunction (7) with operators

S−m(x) =
(
S+
m(x)

)†
S0
m(x) =

∑
j

εmj

1− εjx S
0(j) (20)

generate the nonlinear algebraG(SU2), which is an infinite-dimensional extension of the
Gaudin algebra given in [24]. The commutation relations of these generators are

[S+
m(x), S

−
n (y)] =

2

x − y (xS
0
m+n(x)− yS0

m+n(y))

[S0
m(x), S

±
n (y)] = ±

1

x − y (xS
±
m+n(x)− yS±m+n(y)).

(21)

In conclusion, a novel systematic infinite-dimensional algebraic method for finding exact
solutions to the mean field plus the state-dependent pairing Hamiltonian is proposed. The
method can be extended to other many-body problems such as Hubbard models, interacting
boson systems and so on, as has already been demonstrated for the case of separable potentials
[19–21, 25–27]. The strength of the method is that exact solutions of quantum many-body
problems with general two-body interaction can be obtained systematically and this provides a
means for solving various many-body problems and reveals new nonlinear infinite-dimensional
algebraic symmetries.
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